
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 8, AUGUST 2013 4889

Shannon Meets Nyquist: Capacity of
Sampled Gaussian Channels

Yuxin Chen, Student Member, IEEE, Yonina C. Eldar, Fellow, IEEE, and Andrea J. Goldsmith, Fellow, IEEE

Abstract—We explore two fundamental questions at the inter-
section of sampling theory and information theory: how channel
capacity is affected by sampling below the channel’s Nyquist rate,
and what sub-Nyquist sampling strategy should be employed
to maximize capacity. In particular, we derive the capacity of
sampled analog channels for three prevalent sampling strategies:
sampling with filtering, sampling with filter banks, and sampling
with modulation and filter banks. These sampling mechanisms
subsume most nonuniform sampling techniques applied in prac-
tice. Our analyses illuminate interesting connections between
undersampled channels and multiple-input multiple-output chan-
nels. The optimal sampling structures are shown to extract out the
frequencies with the highest SNR from each aliased frequency set,
while suppressing aliasing and out-of-band noise. We also high-
light connections between undersampled channel capacity and
minimum mean-squared error (MSE) estimation from sampled
data. In particular, we show that the filters maximizing capacity
and the ones minimizing MSE are equivalent under both filtering
and filter-bank sampling strategies. These results demonstrate the
effect upon channel capacity of sub-Nyquist sampling techniques,
and characterize the tradeoff between information rate and sam-
pling rate.

Index Terms—Channel capacity, sampled analog channels, sam-
pling rate, sub-Nyquist sampling.

I. INTRODUCTION

T HE capacity of continuous-time Gaussian channels and
the corresponding capacity-achieving water-filling power

allocation strategy over frequency are well-known [1], and pro-
vide much insight and performance targets for practical com-
munication system design. These results implicitly assume sam-
pling above the Nyquist rate at the receiver end. However, chan-
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nels that are not bandlimited have an infinite Nyquist rate and
hence cannot be sampled at that rate. Moreover, hardware and
power limitations often preclude sampling at the Nyquist rate
associated with the channel bandwidth, especially for wideband
communication systems. This gives rise to several natural ques-
tions at the intersection of sampling theory and information
theory, which we will explore in this paper: 1) how much infor-
mation, in the Shannon sense, can be conveyed through under-
sampled analog channels; and 2) under a sub-Nyquist sampling-
rate constraint, which sampling structures should be chosen in
order to maximize information rate.

A. Related Work

The derivation of the capacity of linear time-invariant (LTI)
channels was pioneered by Shannon [2]. Making use of the
asymptotic spectral properties of Toeplitz operators [3], this ca-
pacity result established the optimality of a water-filling power
allocation based on signal-to-noise ratio (SNR) across the fre-
quency domain [1]. Similar results for discrete-time Gaussian
channels have also been derived using Fourier analysis [4]. On
the other hand, the Shannon–Nyquist sampling theorem, which
dictates that channel capacity is preserved when the received
signal is sampled at or above the Nyquist rate, has frequently
been used to transform analog channels into their discrete coun-
terparts (see, e.g., [5] and [6]). For instance, this paradigm of
discretization was employed by Medard to bound the maximum
mutual information in time-varying channels [7]. However, all
of these works focus on analog channel capacity sampled at or
above the Nyquist rate, and do not account for the effect upon
capacity of reduced-rate sampling.
The Nyquist rate is the sampling rate required for perfect re-

construction of bandlimited analog signals or, more generally,
the class of signals lying in shift-invariant subspaces. Various
sampling methods at this sampling rate for bandlimited func-
tions have been proposed. One example is recurrent nonuniform
sampling proposed by Yen [8], which samples the signal in such
a way that all sample points are divided into blocks where each
block contains points and has a recurrent period. Another
example is generalized multibranch sampling first analyzed by
Papoulis [9], in which the input is sampled through linear
systems. For perfect recovery, these methods require sampling
at an aggregate rate above the Nyquist rate.
In practice, however, the Nyquist rate may be excessive for

perfect reconstruction of signals that possess certain structures.
For example, consider multiband signals, whose spectral con-
tent resides continuously within several subbands over a wide
spectrum, asmight occur in a cognitive radio system. If the spec-
tral support is known a priori, then the sampling rate require-
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ment for perfect recovery is the sum of the subband bandwidths,
termed the Landau rate [10]. One type of sampling mechanism
that can reconstruct multiband signals sampled at the Landau
rate is a filter bank followed by sampling, studied in [11] and
[12]. The basic sampling paradigm of these works is to apply
a bank of prefilters to the input, each followed by a uniform
sampler.
When the channel or signal structure is unknown,

sub-Nyquist sampling approaches have been recently de-
veloped to exploit the structure of various classes of input
signals, such as multiband signals [13]. In particular, sampling
with modulation and filter banks is very effective for signal
reconstruction, where the key step is to scramble spectral
contents from different subbands through the modulation op-
eration. Examples include the modulated wideband converter
proposed by Mishali et al. [13], [14]. In fact, modulation and
filter-bank sampling represents a very general class of realiz-
able nonuniform sampling techniques applied in practice.
Most of the above sampling theoretic work aims at finding op-

timal sampling methods that admit perfect recovery of a class of
analog signals from noiseless samples. There has also beenwork
on minimum reconstruction error from noisy samples based on
certain statistical measures (e.g., mean squared error (MSE)).
Another line of work pioneered by Berger et al. [15]–[18] in-
vestigated joint optimization of the transmitted pulse shape and
receiver prefiltering in pulse amplitude modulation over a sub-
sampled analog channel. In this paper, the optimal receiver pre-
filter that minimizes the MSE between the original signal and
the reconstructed signal is shown to prevent aliasing. However,
this study does not consider optimal sampling techniques based
on capacity as a metric. The optimal filters derived in [15] and
[16] are used to determine an SNRmetric which, in turn, is used
to approximate sampled channel capacity based on the formula
for capacity of bandlimited AWGN channels. However, this ap-
proximation does not correspond to the precise channel capacity
we derive herein, nor is the capacity of more general undersam-
pled analog channels considered.
The tradeoff between capacity and hardware complexity has

been studied in another line of work on sampling precision [19],
[20]. These works demonstrate that due to quantization, over-
sampling can be beneficial in increasing achievable data rates.
The focus of these works is on the effect of oversampling upon
capacity loss due to quantization error, rather than the effect of
quantization-free subsampling upon channel capacity.

B. Contribution

In this paper, we explore sampled Gaussian channels with the
following three classes of sampling mechanisms: 1) a filter fol-
lowed by sampling: the analog channel output is prefiltered by
an LTI filter followed by an ideal uniform sampler (see Fig. 2);
2) filter banks followed by sampling: the analog channel output
is passed through a bank of LTI filters, each followed by an ideal
uniform sampler (see Fig. 3); and 3) modulation and filter banks
followed by sampling: the channel output is passed through
branches, where each branch is prefiltered by an LTI filter, mod-
ulated by different modulation sequences, passed through an-
other LTI filter, and then sampled uniformly. Our main contri-
butions are summarized as follows.

1) Filtering followed by sampling: We derive the sampled
channel capacity in the presence of both white and colored
noise. Due to aliasing, the sampled channel can be repre-
sented as a multiple-input single-output (MISO) Gaussian
channel in the spectral domain, while the optimal input ef-
fectively performs maximum ratio combining (MRC). The
optimal prefilter is derived and shown to extract out the
frequency with the highest SNR while suppressing signals
from all other frequencies and hence preventing aliasing.
This prefilter also minimizes the MSE between the original
signal and the reconstructed signal, illuminating a connec-
tion between capacity and MMSE estimation.

2) Filter banks followed by sampling: A closed-form expres-
sion for sampled channel capacity is derived, along with
analysis that relates it to a multiple-input multiple-output
(MIMO) Gaussian channel. We also derive optimal filter
banks that maximize capacity. The filters select the
frequencies with highest SNRs and zero out signals from
all other frequencies. This alias-suppressing strategy is also
shown to minimize the MSE between the original and re-
constructed signals. This mechanism often achieves larger
sampled channel capacity than a single filter followed by
sampling if the channel is nonmonotonic, and it achieves
the analog capacity of multiband channels at the Landau
rate if the number of branches is appropriately chosen.

3) Modulation and filter banks followed by sampling: For
modulation sequences that are periodic with period , we
derive the sampled channel capacity and show its connec-
tion to a general MIMO Gaussian channel in the frequency
domain. For sampling following a single branch of mod-
ulation and filtering, we provide an algorithm to identify
the optimal modulation sequence for piecewise flat chan-
nels when is an integer multiple of the sampling period.
We also show that the optimal single-branch mechanism is
equivalent to an optimal filter bank with each branch sam-
pled at a period .

One interesting fact we discover for all these techniques is
the nonmonotonicity of capacity with sampling rate, which
indicates that at certain sampling rates, channel degrees of
freedom are lost. Thus, more sophisticated sampling techniques
are needed to maximize achievable data rates at sub-Nyquist
sampling rates in order to preserve all channel degrees of
freedom.

C. Organization

The remainder of this paper is organized as follows. In
Section II, we describe the problem formulation of sampled
analog channels. The capacity results for three classes of sam-
pling strategies are presented in Sections III–V. In each section,
we analyze and interpret the main theorems based on Fourier
analysis and MIMO channel capacity, and identify sampling
structures that maximize capacity. The connection between
the capacity-maximizing samplers and the MMSE samplers
is provided in Section VI. Proofs of the main theorems are
provided in the appendices, and the notation is summarized in
Table I.
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TABLE I
SUMMARY OF NOTATION AND PARAMETERS

II. PRELIMINARIES: CAPACITY OF UNDERSAMPLED CHANNELS

A. Capacity Definition

We consider the continuous-time additive Gaussian channel
(see [1, Ch. 8]), where the channel is modeled as an LTI
filter with impulse response and frequency response

. The transmit signal
is time-constrained to the interval . The analog channel
output is given as

(1)

and is observed over1 , where is stationary zero-mean
Gaussian noise. We assume throughout the paper that perfect
channel state information, i.e., perfect knowledge of , is
known at both the transmitter and the receiver. The analog
channel capacity is defined as [1, Sec. 8.1],

where the supremum is over all input distributions subject
to an average power constraint .
Since any given analog channel can be converted to a count-
able number of independent parallel discrete channels by a
Karhunen–Loeve decomposition, the capacity metric quantifies
the maximum mutual information between the input and output
of these discrete channels. If we denote and

, then the analog channel capacity is
given as follows.
Theorem 1 [1, Th. 8.5.1]: Consider an analog channel with

power constraint and noise power spectral density (PSD)
. Assume that is bounded and integrable,

and that either or that is white. Then,
the analog channel capacity is given by

(2)

1We impose the assumption that both the transmit signal and the observed
signal are constrained to finite time intervals to allow for a rigorous definition
of channel capacity. In particular, as per Gallager’s analysis [1, Ch. 8], we first
calculate the capacity for finite time intervals and then take the limit of the in-
terval to infinity.

where satisfies

(3)

For a channel whose bandwidth lies in , if we re-
move the noise outside the channel bandwidth via prefiltering
and sample the output at a rate , then we can perfectly
recover all information conveyed within the channel bandwidth,
which allows (2) to be achieved without sampling loss. For this
reason, we will use the terminology Nyquist-rate channel ca-
pacity for the analog channel capacity (2), which is commensu-
rate with sampling at or above the Nyquist rate of the received
signal after optimized prefiltering.
Under sub-Nyquist sampling, the capacity depends on the

sampling mechanism and its sampling rate. Specifically, the
channel output is now passed through the receiver’s
analog front end, which may include a filter, a bank of
filters, or a bank of preprocessors consisting of filters and
modulation modules, yielding a collection of analog outputs

. We assume that the analog outputs are
observed over the time interval and then passed through
ideal uniform samplers, yielding a set of digital sequences

, as illustrated in Fig. 1. Here,
each branch is uniformly sampled at a sampling rate of
samples per second.
Define , and denote by

the mutual information between
the input on the interval and the samples
observed on the interval . We pose the problem of
finding the capacity of sampled channels as quantifying
the maximum mutual information in the limit as . The
sampled channel capacity can then be expressed as

where the supremum is over all possible input distributions sub-
ject to an average power constraint .
We restrict the transmit signal to be continuous with
bounded variance (i.e., ), and restrict the
probability measure of to be uniformly continuous. This
restriction simplifies some mathematical analysis, while still
encompassing most practical signals of interest.2

B. Sampling Mechanisms

In this section, we describe three classes of sampling strate-
gies with increasing complexity. In particular, we start from
sampling following a single filter and extend our results to in-
corporate filter banks and modulation banks.
1) Filtering Followed by Sampling: Ideal uniform sampling

is performed by sampling the analog signal uniformly at a rate
, where denotes the sampling interval. In order

to avoid aliasing, suppress out-of-band noise, and compensate
for linear distortion of practical sampling devices, a prefilter is

2Note that this condition is not necessary for our main theorems. An alter-
native proof based on correlation functions is provided in [21], which does not
require this condition.
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Fig. 1. Sampled Gaussian channel. The channel output is passed
through ranches of the receiver analog front end to yield analog outputs

; each is observed over and uniformly
sampled at a rate to yield the sampled sequence . The preprocessor
can be a filter, or combination of a filter and a modulator.

Fig. 2. Filtering followed by sampling: the analog channel output is lin-
early filtered prior to ideal uniform sampling.

often added prior to the ideal uniform sampler [22]. Our sam-
pling process thus includes a general analog prefilter, as illus-
trated in Fig. 2. Specifically, before sampling, we prefilter the
received signal with an LTI filter that has impulse response
and frequency response , where we assume that and

are both bounded and continuous. The filtered output is ob-
served over and can be written as

(4)

We then sample using an ideal uniform sampler, leading to
the sampled sequence

2) Sampling Following Filter Banks: Sampling following a
single filter often falls short of exploiting channel structure. In
particular, although Nyquist-rate uniform sampling preserves
information for bandlimited signals, for multiband signals, it
does not ensure perfect reconstruction at the Landau rate (i.e.,
the total widths of spectral support). That is because uniform
sampling at sub-Nyquist rates may suppress information by col-
lapsing subbands, resulting in fewer degrees of freedom. This
motivates us to investigate certain nonuniform sampling mech-
anisms. We begin by considering a popular class of nonuni-
form sampling mechanisms, where the received signal is pre-
processed by a bank of filters. Most practical nonuniform sam-
pling techniques [9], [11], [12] fall under filter-bank sampling
and modulation-bank sampling (as described in Section II-B3).
Note that the filters may introduce delays, so that this approach
subsumes that of a filter bank with different sampling times at
each branch.
In this sampling strategy, we replace the single prefilter in

Fig. 2 by a bank of analog filters each followed by ideal
sampling at rate , as illustrated in Fig. 3. We denote by

and the impulse response and frequency response
of the th LTI filter, respectively. The filtered analog output in
the th branch prior to sampling is then given as

(5)

Fig. 3. A filter bank followed by sampling: the received analog signal is
passed through branches. In the th branch, the signal is passed through
an LTI prefilter with impulse response , and then sampled uniformly at a
rate .

Fig. 4. Modulation and filter banks followed by sampling: in each branch, the
received signal is prefiltered by an LTI filter with impulse response , mod-
ulated by a periodic waveform , filtered by another LTI filter with impulse
response , and then sampled at a rate .

These filtered signals are then sampled uniformly to yield

where .
3) Modulation and Filter Banks Followed by Sampling: We

generalize the filter-bank sampling strategy by adding an ad-
ditional filter bank and a modulation bank, which includes as
special cases a broad class of nonuniform sampling methods
that are applied in both theory and practice. Specifically, the
sampling system with sampling rate comprises branches.
In the th branch, the received signal is prefiltered by an
LTI filter with impulse response and frequency response

, modulated by a periodic waveform of period ,
filtered by another LTI filter with impulse response and
frequency response , and then sampled uniformly at a rate

, as illustrated in Fig. 4. The first prefilter
will be useful in removing out-of-band noise, while the

periodic waveforms scramble spectral contents from different
aliased sets, thus bringing in more design flexibility that may
potentially lead to better exploitation of channel structure. By
taking advantage of random modulation sequences to achieve
incoherence among different branches, this sampling mecha-
nism has proven useful for subsampling multiband signals [13].
In the th branch, the analog signal after postmodulation fil-

tering prior to sampling can be written as

(6)
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resulting in the digital sequence of samples

III. A FILTER FOLLOWED BY SAMPLING

A. Main Results

The sampled channel capacity under sampling with filtering
is stated in the following theorem.
Theorem 2: Consider the system shown in Fig. 2, where
is Gaussian noise with PSD . Assume that

are all continuous, bounded, and
absolutely Riemann integrable. Additionally, suppose that

satisfies for some

constant3 . The capacity of the sampled channel
with a power constraint is then given parametrically as

(7)

where satisfies

(8)

Here, we denote

As expected, applying the prefilter modifies the channel gain
and colors the noise accordingly. The color of the noise is re-
flected in the denominator term of the corresponding SNR in
(7) at each within the sampling bandwidth.
The channel and prefilter response leads to an equivalent fre-
quency-selective channel, and the ideal uniform sampling that
follows generates a folded version of the nonsampled channel
capacity. Specifically, this capacity expression differs from the
analog capacity given in Theorem 1 in that the SNR in the sam-
pled scenario is in contrast to for the non-
sampled scenario. Water filling over determines the op-
timal power allocation.

B. Approximate Analysis

Rather than providing here a rigorous proof of Theorem 2,
we first develop an approximate analysis by relating the aliased
channel to MISO channels, which allows for a communication
theoretic interpretation. The rigorous analysis, which is deferred
to Appendix A, makes use of a discretization argument and
asymptotic spectral properties of Toeplitz matrices.

3This condition is used in Appendix A as a sufficient condition to guarantee
asymptotic properties of Toeplitz matrices. A similar condition will be used in
Theorems 4 and 6.

Fig. 5. Equivalent MISO Gaussian channel for a given
under filtering followed by sampling. The additive noise has PSD

.

Consider first the equivalence between the sampled channel
and a MISO channel at a single frequency .
As part of the approximation, we suppose the Fourier transform

of the transmitted signal exists.4 The Fourier transform of
the sampled signal at any is given by

(9)

due to aliasing. The summing operation allows us to treat the
aliased channel at each within the sampling bandwidth as a
separate MISO channel with countably many input branches
and a single-output branch, as illustrated in Fig. 5.
By assumption, the noise has spectral density , so

that the filtered noise has PSD . The PSD of the
sampled noise sequence at is then given by

. If we term
the aliased frequency set for , then the amount of power allo-
cated to should “match” the corresponding channel
gain within each aliased set in order to achieve capacity.
Specifically, denote by the transmitted signal for every

. This signal is multiplied by a constant gain
, and sent through the th input branch, i.e.,

(10)

where is a normalizing constant, and

The resulting SNR can be expressed as the sum of SNRs (as
shown in [23]) at each branch. Since the sampling operation
combines signal components at frequencies from each aliased
set , it is equivalent to having a set of par-
allel MISO channels, each indexed by some .
The water-filling strategy is optimal in allocating power among
the set of parallel channels, which yields the parametric (8) and
completes our approximate analysis.

4The Fourier transform of the input signal typically does not exist since the
input may have infinite energy.
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C. Proof Sketch

Since the Fourier transform is not well-defined for signals
with infinite energy, there exist technical flaws lurking in the
approximate treatment of the previous subsection. The key
step to circumvent these issues is to explore the asymptotic
properties of Toeplitz matrices/operators. This approach was
used by Gallager [1, Th. 8.5.1] to prove the analog channel
capacity theorem. Under uniform sampling, however, the
sampled channel no longer acts as a Toeplitz operator, but
instead becomes a block-Toeplitz operator. Since conventional
approaches [1, Ch. 8.4] do not accommodate for block-Toeplitz
matrices, a new analysis framework is needed. We provide here
a roadmap of our analysis framework and defer the complete
proof to Appendix A.
1) Discrete Approximation: The channel response and the

filter response are both assumed to be continuous, which moti-
vates us to use a discrete-time approximation in order to trans-
form the continuous-time operator into its discrete counterpart.
We discretize a time domain process by pointwise sampling
with period , e.g., is transformed into by set-
ting . For any given , this allows us to use a
finite-dimensional matrix to approximate the continuous-time
block-Toeplitz operator. Then, due to the continuity assumption,
an exact capacity expression can be obtained by letting go to
zero.
2) Spectral Properties of Block-Toeplitz Matrices: After dis-

cretization, the input–output relation is similar to a MIMO dis-
crete-time system. Applying MIMO channel capacity results
leads to the capacity for a given and . The channel capacity
is then obtained by taking to infinity and to zero, which
can be related to the channel matrix’s spectrum using Toeplitz
theory. Since the filtered noise is nonwhite and correlated across
time, we need to whiten it first. This, however, destroys the
Toeplitz properties of the original system matrix. In order to
apply established results in Toeplitz theory, we make use of the
concept of asymptotic equivalence [24] that builds connections
between Toeplitz matrices and non-Toeplitz matrices. This al-
lows us to relate the capacity limit with spectral properties of
the channel and filter response.

D. Optimal Prefilters

1) Derivation of Optimal Prefilters: Since different prefilters
lead to different channel capacities, a natural question is how to
choose to maximize capacity. The optimizing prefilter is
given in the following theorem.
Theorem 3: Consider the system shown in Fig. 2 and define

for any integer . Suppose that in each aliased set
, there exists such that

Then, the capacity in (7) is maximized by the filter with fre-
quency response

if
otherwise,

(11)

for any .
Proof: It can be observed from (7) that the frequency

response at any can only affect the SNR at mod
, indicating that we can optimize for frequencies and

separately. Specifically, the
SNR at each in the aliased channel is given by

where

and . That said, is a convex combination of
and is thus upper bounded by . This bound

can be attained by the filter given in (11).
The optimal prefilter puts all its mass in those frequencies

with the highest SNR within each aliased set .
Even if the optimal prefilter does not exist, we can find a pre-
filter that achieves an information rate arbitrarily close to the
maximum capacity once exists. The existence of
the supremum is guaranteed under mild conditions, e.g., when

is bounded.
2) Interpretations: Recall that is applied after the

noise is added. One distinguishing feature in the subsampled
channel is the noninvertibility of the prefiltering operation, i.e.,
we cannot recover the analog channel output from sub-Nyquist
samples. As shown above, the aliased SNR is a convex com-
bination of SNRs at all aliased branches, indicating that
plays the role of “weighting” different branches. As in MRC,
those frequencies with larger SNRs should be given larger
weight, while those that suffer from poor channel gains should
be suppressed.
The problem of finding optimal prefilters corresponds to

joint optimization over all input and filter responses. Looking
at the equivalent aliased channel for a given frequency

as illustrated in Fig. 5, we have full control
over both and . Although MRC at the transmitter
side maximizes the combiner SNR for a MISO channel [23], it
turns out to be suboptimal for our joint optimization problem.
Rather, the optimal solution is to perform selection combining
[23] by setting to one for some , as well
as noise suppression by setting to zero for all
other . In fact, setting to zero precludes the undesired
effects of noise from low SNR frequencies, which is crucial in
maximizing data rate.
Another interesting observation is that optimal prefiltering

equivalently generates an alias-free channel. After passing
through an optimal prefilter, all frequencies modulo except
the one with the highest SNR are removed, and hence, the
optimal prefilter suppresses aliasing and out-of-band noise.
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Fig. 6. Capacity of sampled additive Gaussian noise channel under ideal uni-
form sampling without filtering. (a) The channel gain and the PSD of the noise.
(b) Sampled channel capacity versus analog channel capacity under a power
constraint .

This alias-suppressing phenomena, while different from many
sub-Nyquist works that advocate mixing instead of alias sup-
pressing [13], arises from the fact that we have control over the
input shape.

E. Numerical Examples

1) Additive Gaussian Noise Channel Without Prefiltering:
The first example we consider is the additive Gaussian noise
channel. The channel gain is flat within the channel bandwidth

, i.e., if and oth-
erwise. The noise is modeled as a measurable and stationary
Gaussian process with the PSD plotted in Fig. 6(a). This is the
noise model adopted by Lapidoth in [25] to approximate white
noise, which avoids the infinite variance of the standard model
for unfiltered white noise. We employ ideal pointwise sampling
without filtering.
Since the noise bandwidth is larger than the channel band-

width, ideal uniform sampling without prefiltering does not
allow analog capacity to be achieved when sampling at a rate
equal to twice the channel bandwidth, i.e., the Nyquist rate.
Increasing the sampling rate above twice the channel band-
width (but below the noise bandwidth) spreads the total noise
power over a larger sampling bandwidth, reducing the noise
density at each frequency. This allows the sampled capacity to
continue increasing when sampling above the Nyquist rate, as
illustrated in Fig. 6(b). It can be seen that the capacity does not
increase monotonically with the sampling rate. We will discuss
this phenomena in more detail in Section III-E3.
2) Optimally Filtered Channel: In general, the frequency

response of the optimal prefilter is discontinuous, which may

Fig. 7. Capacity of optimally filtered channel: (a) frequency response of the
original channel; (b) optimal prefilter associated with this channel for sampling
rate 0.4; (c) optimally filtered channel response with sampling rate 0.4; (d) ca-
pacity versus sampling rate for the optimal prefilter and for the matched filter.

be hard to realize in practice. However, for certain classes of
channel models, the prefilter has a smooth frequency response.
One example of this channel class is amonotone channel, whose
channel response obeys
for any . Theorem 3 implies that the optimizing prefilter
for a monotone channel reduces to a low-pass filter with cutoff
frequency .
For nonmonotone channels, the optimal prefilter may not

be a low-pass filter, as illustrated in Fig. 7. Fig. 7(b) shows
the optimal filter for the channel given in Fig. 7(a) with

, which is no longer a low-pass filter.
3) Capacity Nonmonotonicity: When the channel is not

monotone, a somewhat counterintuitive fact arises: the channel
capacity is not necessarily a nondecreasing function of
the sampling rate . This occurs, for example, in multiband
channels as illustrated in Fig. 8. Here, the Fourier transform
of the channel response is concentrated in two subintervals
within the overall channel bandwidth. Specifically, the entire
channel bandwidth is contained in with Nyquist rate

, and that the channel frequency response is given by

if
otherwise.

(12)

If this channel is sampled at a rate , then aliasing
occurs and leads to an aliased channel with one subband (and
hence one degree of freedom). However, if sampling is per-
formed at a rate , it can be easily verified that the
two subbands remain nonoverlapping in the aliased channel, re-
sulting in two degrees of freedom.
The tradeoff curve between capacity and sampling rate with

an optimal prefilter is plotted in Fig. 8(b). This curve indicates
that increasing the sampling rate may not necessarily increase
capacity for certain channel structures. In other words, a single
filter followed by sampling largely constrains our ability to ex-
ploit channel and signal structures. This is not the case for more
general sampling structures, as we show in the next section.
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Fig. 8. Sampled channel capacity for a multiband channel under filter-bank
sampling. (a) Channel gain of the multiband channel. The power constraint is

, and the noise power is . (b) Sampled channel capacity for a
single filter followed by sampling and for a filter bank followed by sampling for
a bank of two filters and of four filters.

IV. A BANK OF FILTERS FOLLOWED BY SAMPLING

A. Main Results

We now treat filter-bank sampling, in which the channel
output is filtered and sampled through multiple branches as
illustrated in Fig. 3.
In order to state our capacity results, we introduce two ma-

trices and defined in the Fourier domain. Here, is an
infinite matrix of rows and infinitely many columns and
is a diagonal infinite matrix such that for every
and every integer :

Theorem 4: Consider the system shown in Fig. 3. Assume
that and are all continuous, bounded
and absolutely Riemann integrable. Additionally, assume that

satisfies for some

constant , and that is right-invertible for every .

Define . The capacity of the sampled
channel with a power constraint is given as

where

Here, denotes the th largest eigenvalue of

.
Remark 1: We can express this capacity in a more traditional

MIMO capacity form as

(13)

where and

The optimal corresponds to a water-filling power
allocation strategy based on the singular values of the equiv-
alent channel matrix , where is associated with the
original channel and arises from prefiltering and noise
whitening. For each , the integrand
in (13) can be interpreted as a MIMO capacity formula. We
have receive branches and can still optimize the transmitted
signals at a countable number of
input branches, but this time we have receive branches.
The channel capacity is achieved when the transmit signals
are designed to decouple this MIMO channel into parallel
channels (and hence degrees of freedom), each associated
with one of its singular directions.

B. Approximate Analysis

The sampled analog channel under filter-bank sampling
can be studied through its connection with MIMO Gaussian
channels (see Fig. 9). Consider first a single frequency

. Since we employ a bank of filters each
followed by an ideal uniform sampler, the equivalent channel
has receive branches, each corresponding to one branch of
filtered sampling at rate . The noise received in the th
branch is zero-mean Gaussian with spectral density

indicating the mutual correlation of noise at different branches.
The received noise vector can be whitened by multiplying

by an whitening
matrix . Since the whitening operation is
invertible, it preserves capacity. After whitening, the channel
of Fig. 9 at frequency has the following channel matrix:

(14)
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Fig. 9. Equivalent MIMO Gaussian channel for a frequency
under sampling with a bank of filters. Here,

.

MIMO Gaussian channel capacity results [26] immediately
imply that the capacity of the channel in Fig. 9 at any

can be expressed as

(15)

subject to the constraints that trace and
, where denotes the power allocation matrix.

Performing water-filling power allocation across all parallel
channels leads to our capacity expression.

C. Optimal Filter Bank

1) Derivation of Optimal Filter Banks: In general,
is not perfectly determined

by and at a single frequency , but also depends
on the water-level, since the optimal power allocation strategy
relies on the power constraint as well as and
across all . In other words, is
a function of all singular values of and the universal
water-level associated with optimal power allocation. Given
two sets of singular values, we cannot determine which set is
preferable without accounting for the water-level, unless one
set is elementwise larger than the other. That said, if there exists
a prefilter that maximizes all singular values simultaneously,
then this prefilter will be universally optimal regardless of the
water-level. Fortunately, such optimal schemes exist, as we
characterize in Theorem 5.
Since is a diagonal matrix, denotes the th

largest entry of . The optimal filter bank can then be given
as follows.
Theorem 5: Consider the system shown in Fig. 3. Suppose

that for each aliased set and each

, there exists an integer such that is equal to

the th largest element in . The capacity

(13) under filter-bank sampling is then maximized by a bank of
filters for which the frequency response of the th filter is given
by

if ;

otherwise
(16)

for all and . The resulting
maximum channel capacity is given by

(17)

where is chosen such that

(18)

Proof: See Appendix C.
The choice of prefilters in (16) achieves the upper bounds on

all singular values, and is hence universally optimal regardless
of the water level. Since has orthonormal rows, it acts as
an orthogonal projection and outputs an -dimensional sub-
space. The rows of the diagonal matrix are orthogonal to
each other. Therefore, the subspace closest to the channel space
spanned by corresponds to the rows of containing
the highest channel gains out of the entire aliased frequency
set . The maximum data rate is then achieved
when the filter bank outputs frequencies with the highest
SNR among the set of frequencies equivalent modulo and
suppresses noise from all other branches.
We note that if we consider the enlarged aliased set

, then the optimal filter bank is equivalent
to generating an alias-free channel over the frequency interval

. This again arises from the nature of the
joint-optimization problem: since we are allowed to control the
input shape and sampling jointly, we can adjust the input shape
based on the channel structure in each branch, which turn out
to be alias-suppressing.

D. Discussion and Numerical Examples

In a monotone channel, the optimal filter bank will sequen-
tially crop out the best frequency bands, each of bandwidth

. Concatenating all of these frequency bands results in a
low-pass filter with cutoff frequency , which is equivalent
to single-branch sampling with an optimal filter. In other words,
for monotone channels, using filter banks harvests no gain in
capacity compared to a single branch with a filter followed by
sampling.
For more general channels, the capacity is not necessarily

a monotone function of . Consider again the multiband
channel where the channel response is concentrated in two
subintervals, as illustrated in Fig. 8(a). As discussed above,
sampling following a single filter only allows us to select
the best single frequency with the highest SNR out of the
set , while sampling following filter banks

allows us to select the best out of the set .
Consequently, the channel capacity with filter-bank sampling
exceeds that of sampling with a single filter, but neither ca-
pacity is monotonically increasing in . This is shown in
Fig. 8(b). Specifically, we see in this figure that when we apply
a bank of two filters prior to sampling, the capacity curve is
still nonmonotonic but outperforms a single filter followed by
sampling.
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Another consequence of our results is that when the number
of branches is optimally chosen, the Nyquist-rate channel ca-
pacity can be achieved by sampling at any rate above the Landau
rate. In order to show this, we introduce the following notion of
a channel permutation.We call a permutation of a channel
response at rate if, for any ,

The following proposition characterizes a sufficient condition
that allows the Nyquist-rate channel capacity to be achieved at
any sampling rate above the Landau rate.
Proposition 1: If there exists a permutation of at

rate such that the support of is , then op-
timal sampling following a bank of filters achieves Nyquist-
rate capacity when .
Examples of channels satisfying Proposition 1 include any

multiband channel with subbands among which subbands
have nonzero channel gain. For any ,
we are always able to permute the channel at rate to
generate a band-limited channel of spectral support size .
Hence, sampling above the Landau rate following filters
achieves the Nyquist-rate channel capacity. This is illustrated
in Fig. 8(b) where sampling with a four-branch filter bank has a
higher capacity than sampling with a single filter, and achieves
the Nyquist-rate capacity whenever . The optimal
filter-bank sampling for most general channels is identified
in [21], where both the number of branches and per-branch
sampling rate are allowed to vary.

V. MODULATION AND FILTER BANKS FOLLOWED BY SAMPLING

A. Main Results

We now treat modulation and filter banks followed by sam-
pling. Assume that , where and are co-
prime integers, and that the Fourier transform of is given
as . Before stating our theorem, we introduce
the following two Fourier symbol matrices and . The

-dimensional matrix contains submatrices with
the th submatrix given by an -dimensionalmatrix .
Here, for any , and , we have

The matrices and are infinite diagonal matrices such that
for every integer :

Theorem 6: Consider the system shown in Fig. 4. As-
sume that , and are all
continuous, bounded and absolutely Riemann integrable,
is right invertible, and that the Fourier transform of
is given as . Additionally, suppose that

satisfies for some

constant . We further assume that , where
and are coprime integers. The capacity of the sampled
channel with a power constraint is given by

(19)

where is chosen such that

Remark 2: The right invertibility of ensures that the sam-
pling method is nondegenerate, e.g., the modulation sequence
cannot be zero.
The optimal corresponds to a water-filling power allocation

strategy based on the singular values of the equivalent channel
matrix , where is due to noise
prewhitening and is the equivalent channel matrix after
modulation and filtering. This result can again be interpreted
by viewing (19) as the MIMO Gaussian channel capacity of the
equivalent channel. We note that a closed-form capacity expres-
sion may be hard to obtain for general modulating sequences

. This is because the multiplication operation corresponds
to convolution in the frequency domain which does not preserve
Toeplitz properties of the original operator associated with the
channel filter.When is periodic, however, it can bemapped
to a spike train in the frequency domain, which preserves block
Toeplitz properties, as described in more detail in Appendix D.

B. Approximate Analysis

The Fourier transform of the signal prior to modulation in
the th branch at a given frequency can be expressed as

, where . Multiplication
of this premodulation signal with the modulation sequence

corresponds to convolution in the
frequency domain.
Recall that with integers and . We, there-

fore, divide all samples in the th branch
into groups, where the th group contains

. Hence, each group is equivalent to the
samples obtained by sampling at rate . The
sampling system, when restricted to the output on each group
of the sampling set, can be treated as LTI, thus justifying its
equivalent representation in the spectral domain. Specifically,
for the th branch, we denote by
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the output response of the preprocessing system at time due
to an input impulse at time . We then introduce a new LTI
impulse response associated with the th group such that

. It can easily be shown that when the

same sampling set is employed, the pre-

processing system associated with results in the same
sampled output as the one associated with . This allows us
to treat the samples of each distinct group as the ones obtained
by an LTI preprocessing system followed by uniform sampling.
Suppose the channel output is passed through the LTI

preprocessing system associated with the th group of the th
branch, i.e., the one associated with . The Fourier transform
of the output of this LTI system prior to uniform sampling, as
marked in Fig. 10(b), can be written as

After uniform sampling at rate , the Fourier transform of
the samples in the th group can be expressed as

where

(20)

Since the sampled outputs of the original sampling system
are equivalent to the union of samples obtained by LTI
systems each followed by uniform sampling at rate , we
can transform the true sampling system into a MIMO Gaussian
channel with an infinite number of input branches and finitely
many output branches, as illustrated in Fig. 10. The well-known
formula for the capacity of a MIMO channel can now be used
to derive our capacity results.
We note that due to the convolution in the spectral domain,

the frequency response of the sampled output at frequency
is a linear combination of frequency components and

from several different aliased frequency sets.We define
the modulated aliased frequency set as a generalization of the
aliased set. Specifically, for each , the modulated aliased set is

Fig. 10. Equivalent MIMO Gaussian channel for a given
under sampling with modulation banks and filter banks. (a) The overall MIMO
representation, where each branch has output each corresponding to a
distinct group. (b) The MISO representation of the th group in the th branch,
where is defined in (20). This is associated with the set of samples

.

given by5 . By our assumption that

with and being relatively prime, simple results in
number theory imply that

In other words, for a given , the
sampled output at depends on the input in the en-
tire modulated aliased set. Since the sampling band-
width at each branch is , all outputs at frequencies

rely on
the inputs in the same modulated aliased set. This can be
treated as a Gaussian MIMO channel with a countable number
of input branches at the frequency set
and groups of output branches, each associated with one
group of sample sequences in one branch. As an example, we
illustrate in Fig. 10 the equivalent MIMO Gaussian channel
under sampling following a single branch of modulation and
filtering, when for all .
The effective frequencies of this frequency-selective MIMO

Gaussian channel range from to , which gives us
a set of parallel channels each representing a single frequency
. The water-filling power allocation strategy is then applied to
achieve capacity.

5We note that although each modulated aliased set is countable, it may be a
dense set when is irrational. Under the assumption in Theorem 6, how-
ever, the elements in the set have a minimum spacing of .
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A rigorous proof of Theorem 6 based on Toeplitz properties
is provided in Appendix D.

C. An Upper Bound on Sampled Capacity

Following the same analysis of optimal filter-bank sampling
developed in Section IV-C, we can derive an upper bound on
the sampled channel capacity.
Corollary 1: Consider the system shown in Fig. 4. Suppose

that for each aliased set and each

, there exists an integer such that is

equal to the th largest element in . The
capacity (19) under sampling following modulation and filter
banks can be upper bounded by

(21)

where is chosen such that

(22)

Proof: By observing that has or-
thonormal rows, we can derive the result using Proposition 4 in
Appendix C.
The upper bound of Corollary 1 coincides with the upper

bound on sampled capacity under -branch filter-bank sam-
pling. This basically implies that for a given sampling rate
, modulation and filter bank sampling does not outperform

filter-bank sampling in maximizing sampled channel capacity.
In other words, we can always achieve the same performance
by adding more branches in filter-bank sampling.
Note, however, that this upper bound may not be tight, since

we restrict our analysis to periodic modulation sequences. Gen-
eral modulation is not discussed here.

D. Single-Branch Sampling With Modulation and Filtering
Versus Filter-Bank Sampling

Although the class of modulation and filter bank sampling
does not provide capacity gain compared with filter-bank sam-
pling, it may potentially provide implementation advantages,
depending on the modulation period . Specifically, mod-
ulation-bank sampling may achieve a larger capacity region
than that achievable by filter-bank sampling with the same
number of branches. We consider here two special cases of
single-branch modulation sampling and investigate whether
any hardware benefit can be harvested.
1) for some integer : In this case, the

modulated aliased set is
, which is equivalent to the original

aliased frequency set. That said, the sampled output is
still a linear combination of . But
since linear combinations of these components can be attained
by simply adjusting the prefilter response , the modulation
bank does not provide any further design degrees of freedom,

Fig. 11. The channel gain of Example 1. The noise is of unit power spectral
density.

and hence does not improve the capacity region achievable by
sampling with a bank of filters.
2) for some integer : In this case, the modu-

lated aliased set is enlarged to
, which may potentially provide implemen-

tation gain compared with filter-bank sampling with the same
number of branches. We illustrate this in the following example.
Example 1: Suppose that the channel contains 3 subbands

with channel gains as plotted in Fig. 11, and that the noise is of
unit spectral density within these 3 subbands and 0 otherwise.
i) Let us first consider single-branch sampling with fil-
tering with . As illustrated in Fig. 11, Subbands 1
and 3 are mixed together due to aliasing. According to
Section III-D, the optimal prefilter without modulation
would be a bandpass filter with passband ,
resulting in a channel containing two subbands with
respective channel gains 2 and 1.

ii) If we add a modulation sequence with period ,
then the channel structure can be better exploited. Specif-
ically, suppose that the modulation sequence obeys

, and for all other ’s, and that the
postmodulation filter is a bandpass filter with passbands

.We can see that this moves spec-
tral contents of Subbands 1 and 3 to frequency bands

and , respectively, which are alias-
free. Therefore, we obtain a two-subband channel with
respective channel gains both equal to 2, thus outper-
forming a single branch of sampling with filtering.

More generally, let us consider the following scenario. Sup-
pose that the channel of bandwidth is equally di-
vided into subbands each of bandwidth for
some integers and . The SNR within each
subband is assumed to be flat. For instance, in the presence of
white noise, if with being the coherence band-
width [23], the channel gain (and hence the SNR) is roughly
equal across the subband. Algorithm 1 given below generates an
alias-free sampled analog channel, which is achieved bymoving
the subbands with the highest SNRs to alias-free locations.
By Corollary 1, this algorithm determines an optimal sampling
mechanism that maximizes capacity under a single branch of
sampling with modulation and filtering. Specifically, take any

, and the algorithm works as follows.
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Algorithm 1

1. Initialize. Find the largest elements in
. Denote by

the index set of these elements
such that . Set

.

2. For

Let .

Set , and .

Algorithm 1 first selects the subbands with the highest
SNR and then moves each of the selected subbands to a new
location by appropriately setting , which guarantees that 1)
the movement does not corrupt any of the previously chosen lo-
cations; and 2) the contents in the newly chosen locations will
be alias-free. The postmodulation filter is applied to suppress
the frequency contents outside the set of newly chosen subband
locations. One drawback of this algorithm is that we need to pre-
serve as many as subbands in order to make it work.
The performance of Algorithm 1 is equivalent to the one

using an optimal filter bank followed by sampling with sam-
pling rate at each branch. Hence, single-branch sampling
effectively achieves the same performance as multibranch
filter-bank sampling. This approach may be preferred since
building multiple analog filters is often expensive (in terms of
power consumption, size, or cost). We note, however, that for
a given overall sampling rate, modulation-bank sampling does
not outperform filter-bank sampling with an arbitrary number
of branches. The result is formally stated as follows.
Proposition 2: Consider the setup in Theorem 6. For a given

overall sampling rate , sampling with branches of optimal
modulation and filter banks does not achieve higher sampled
capacity compared to sampling with an optimal bank of
filters.
Hence, the main advantage of applying a modulation bank is

a hardware benefit, namely, using fewer branches and hence less
analog circuitry to achieve the same capacity.

VI. CONNECTIONS BETWEEN CAPACITY AND MMSE

In Sections III-D and IV-C, we derived, respectively, the op-
timal prefilter and the optimal filter bank that maximize ca-
pacity. It turns out that such choices of sampling methods co-
incide with the optimal prefilter/filter bank that minimize the
MSE between the Gaussian channel input and the signal recon-
structed from sampling the channel output, as detailed below.
Consider the following sampling problem. Let be a zero-

meanwide-sense stationary (WSS) stochastic signal whose PSD
satisfies a power constraint6 . This

input is passed through a channel consisting of an LTI filter
and additive stationary Gaussian noise. We sample the channel
output using a filter bank at a fixed rate in each branch,
and recover a linearMMSE estimate of from its sam-
ples in the sense of minimizing for all sample

6We restrict our attention to WSS input signals. This restriction, while falling
short of generality, allows us to derive sampling results in a simple way.

times. We propose to jointly optimize and the sampling
method. Specifically, our joint optimization problem can now
be posed as follows: for which input process and for which
filter bank is the estimation error minimized
for all sample times.
It turns out that the optimal input and the optimal filter bank

coincide with those maximizing channel capacity, which is cap-
tured in the following proposition.
Proposition 3: Suppose the channel input is any WSS

signal. For a given sampling system, let denote the op-
timal linear estimate of from the digital sequence .
Then, the capacity-optimizing filter bank given in (16) and its
corresponding optimal input minimize the linear MSE

over all possible LTI filter banks for any
sample time.

Proof: See Appendix E.
Proposition 3 implies that the input signal and the filter bank

optimizing channel capacity also minimize the MSE between
the original input signal and its reconstructed output. We note
that if the samples and are jointly Gaussian random
variables, then the MMSE estimate for a given input
process is linear in . That said, for Gaussian inputs
passed through Gaussian channels, the capacity-maximizing
filter bank also minimizes the MSE even if we take into account
nonlinear estimation. Thus, under sampling with filter-banks
for Gaussian channels, information theory reconciles with
sampling theory through the SNR metric when determining
optimal systems. Intuitively, high SNR typically leads to large
capacity and small MSE.
Proposition 3 includes the optimal prefilter under single-pre-

filter sampling as a special case. We note that a similar MSE
minimization problem was investigated decades ago with ap-
plications in PAM [17], [18]: a given random input is pre-
filtered, corrupted by noise, uniformly sampled, and then post-
filtered to yield a linear estimate . The goal in that work
was to minimize the MSE between and over all pre-
filtering (or pulse shaping) and postfiltering mechanisms. While
our problem differs from this PAM design problem by opti-
mizing directly over the random input instead of the pulse shape,
the two problems are similar in spirit and result in the same
alias-suppressing filter. However, earlier work did not account
for filter-bank sampling or make connections between mini-
mizing MSE and maximizing capacity.

VII. CONCLUSION AND FUTURE WORK

We have characterized sampled channel capacity as a func-
tion of sampling rate for different sampling methods, thereby
forming a new connection between sampling theory and infor-
mation theory. We show how the capacity of a sampled analog
channel is affected by reduced sampling rate and identify
optimal sampling structures for several classes of sampling
methods, which exploit structure in the sampling design. These
results also indicate that capacity is not always monotonic
in sampling rate, and illuminate an intriguing connection be-
tween MIMO channel capacity and capacity of undersampled
analog channels. The capacity optimizing sampling structures
are shown to extract the frequency components with highest
SNRs from each aliased set, and hence suppress aliasing and
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out-of-band noise. We also show that for Gaussian inputs over
Gaussian channels, the optimal filter/filter bank also minimizes
the MSE between the channel input and the reconstructed
signal. Our work establishes a framework for using the in-
formation-theoretic metric of capacity to optimize sampling
structures, offering a different angle from traditional design of
sampling methods based on other performance metrics.
Our work uncovers additional questions at the intersection of

sampling theory and information theory. For instance, an upper
bound on sampled capacity under sampling rate constraints for
more general nonuniform sampling methods would allow us
to evaluate which sampling mechanisms are capacity-achieving
for any channel. Moreover, for channels where there is a gap be-
tween achievable rates and the capacity upper bound, these re-
sults might provide insight into new sampling mechanisms that
might close the gap to capacity. Investigation of capacity under
more general nonuniform sampling techniques is an interesting
topic that is studied in our companion paper [21]. In addition,
the optimal sampling structure for time-varying channels will
require different analysis than used in the time-invariant case. It
is also interesting to investigate what sampling mechanisms are
optimal for channels when the channel state is partially or fully
unknown. A deeper understanding of how to exploit channel
structure may also guide the design of sampling mechanisms
for multiuser channels that require more sophisticated coopera-
tion schemes among users and are impacted in a more complex
way by subsampling.

APPENDIX A
PROOF OF THEOREM 2

We begin by an outline of the proof. A discretization argu-
ment is first used to approximate arbitrarily well the analog sig-
nals by discrete-time signals, which allows us to make use of
the properties of Toeplitz matrices instead of the more general
Toeplitz operators. By noise whitening, we effectively convert
the sampled channel to a MIMO channel with i.i.d. noise for any
finite time interval. Finally, the asymptotic properties of Toeplitz
matrices are exploited in order to relate the eigenvalue distribu-
tion of the equivalent channel matrix with the Fourier represen-
tation of both channel filters and prefilters. The proofs of several
auxiliary lemmas are deferred to Appendix F.
Instead of directly proving Theorem 2, we prove the theorem

for a simpler scenario where the noise is of unit spectral
density. In this case, our goal is to prove that the capacity is
equivalent to

where the water level can be calculated through the following
equation:

This capacity result under white noise can then be immediately
extended to accommodate for colored noise. Suppose the
additive noise is of PSD . We can then split the channel

filter into two parts with respective frequency response
and . Equivalently, the channel

input is passed through an LTI filter with frequency response
, contaminated by white noise, and then passed

through a filter with transfer function followed
by an ideal sampler with rate . This equivalent representation
immediately leads to the capacity in the presence of colored
noise by substituting corresponding terms into the capacity
with white noise.

A) Channel Discretization and Diagonalization: Given
that is continuous and Riemann integrable, one approach to
study the continuous-time problem is via reduction to an equiv-
alent discrete-time problem [27, Ch. 16]. In this section, we
describe the method of obtaining our equispace discretization
approximations to the continuous-time problems, which will
allow us to exploit the properties of block-Toeplitz matrices
instead of the more complicated block-Toeplitz operators.
For notational simplicity, we define

for any function . If is a continuous function, then
, where may be a function of .

We also define . Set and
for some integers and , and define

We also define

...
...

...

...
...

With these definitions, the original channel model can be ap-
proximated with the following discretized channel:

(23)

As can be seen, is a fat block Toeplitz matrix. Moreover,
is asymptotically equivalent to a Toeplitz matrix, as will

be shown in Appendix A-C. We note that each element is a
zero-mean Gaussian variable with variance .
In addition, for any , implying that is an
i.i.d. Gaussian vector. The filtered noise is no longer i.i.d.
Gaussian, which motivates us to whiten the noise first.
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The prewhitening matrix is given by ,
which follows from the fact that

This basically implies that projects the i.i.d. Gaussian
noise onto an -dimensional subspace, and that
is now -dimensional i.i.d. Gaussian noise. Left-multiplication
with this whitening matrix yields a new output

Here, consists of independent zero-mean Gaussian elements
with variance . Since the prewhitening operation is in-
vertible, we have

(24)

In this paper, we will use and in-
terchangeably to denote the mutual information between the
-dimensional vector and .
Moreover, when is of bounded variance (i.e.,

) and the additive noise is Gaussian,
it has been shown [28] that the mutual information is
weakly continuous in the input distribution. Therefore,

. As
increases, the discretized sequence becomes a finer approxi-

mation to the continuous-time signal. The uniform continuity
of the probability measure of and the continuity of mutual
information immediately imply that
converges uniformly in . We also observe that for every given

exists due to the continuity condition
of the mutual information. Therefore, applying the Moore–Os-
good theorem in real analysis allows us to exchange the order
of limits.
Based on the above arguments, the capacity of the sampled

analog channel can be expressed as the following limit:

Note that it suffices to investigate the case where is an in-
teger multiple of since

.
B) Preliminaries on Toeplitz Matrices: Before proceeding

to the proof of the theorem, we briefly introduce several basic
definitions and properties related to Toeplitz matrices. Interested
readers are referred to [3] and [24] for more details.
A Toeplitz matrix is an matrix where

, which implies that a Toeplitz matrix
is uniquely defined by the sequence . A special case of
Toeplitz matrices is circulant matrices where every row of the
matrix is a right cyclic shift of the row above it. The Fourier

series (or symbol) with respect to the sequence of Toeplitz ma-
trices is given
by

(25)

Since the sequence uniquely determines and vice
versa, we denote by the Toeplitz matrix generated by
(and hence ). We also define a related circulant matrix

with top row , where

(26)

One key concept in our proof is asymptotic equivalence,
which is formally defined as follows [24].

Definition 1 (Asymptotic Equivalence): Two sequences of
matrices and are said to be asymptotically

equivalent if
1) and are uniformly bounded, i.e., there exists a con-
stant independent of such that

(27)

2) .
We will abbreviate asymptotic equivalence of and

by . Two important results regarding asymp-
totic equivalence are given in the following lemmas [24].

Lemma 1: Suppose with eigenvalues
and , respectively. Let be an arbitrary continuous
function. Then, if the limits and

exist, we have

(28)

Lemma 2:
a) Suppose a sequence of Toeplitz matrices where

satisfies that is absolutely summable.
Suppose the Fourier series related to is positive
and is Hermitian. Then, we have

(29)

If we further assume that there exists a constant
such that for all , then we have

(30)

b) Suppose and , then
.

Toeplitz or block Toeplitz matrices have well-known asymp-
totic spectral properties [3], [29]. The notion of asymptotic
equivalence allows us to approximate non-Toeplitz matrices
by Toeplitz matrices, which will be used in the next section to
analyze the spectral properties of the channel matrix.

C) Capacity via Convergence of the Discrete Model: After
channel discretization, we can calculate the capacity for each
finite duration using well-known MIMO Gaussian channel



4904 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 8, AUGUST 2013

capacity, which, however, depends on the spectrum of the trun-
cated channel and may vary dramatically for different . By our
definition of capacity, we will pass to infinity and see whether
the finite-duration capacity converges, and if so, whether there
is a closed-form expression for the limit. Fortunately, the beau-
tiful asymptotic properties of block-Toeplitz matrices guaran-
tees the existence of the limit and allows for a closed-form so-
lution using the frequency response of and .
To see this, we first construct a new channel whose capacity is

easier to obtain, and will show that the new channel has asymp-
totically equivalent channel capacity as the original channel. As
detailed below, each key matrix associated with the new channel
is a Toeplitz matrix, whose spectrum can be well approximated
in the asymptotic regime [24].
Consider the spectral properties of the Hermitian matrices

and . We can see that

(31)

Obviously, is not a Toeplitz matrix. Instead of investi-
gating the eigenvalue distribution of directly, we look
at a new Hermitian Toeplitzmatrix associated with
such that for any :

(32)

Lemma 3: The above definition of implies that

(33)

Proof: See Appendix F-A.
On the other hand, for any , we have

(34)

Hence, the Hermitian matrix is still Toeplitz.
However, the matrix of interest in the capacity will be

instead. We, therefore, construct an asymptoti-
cally equivalent circulant matrix as defined in (26), which
will preserve the Toeplitz property when we take
[24]. Formally speaking, can be related to
as follows.

Lemma 4: If there exists some constant such that
for all ,

(35)

holds, then .
Proof: See Appendix B.

One of the most useful properties of a circulant matrix is
that its eigenvectors are

(36)

Suppose the eigenvalue decomposition of is given as

(37)

where is a Fourier coefficient matrix, and is a diagonal
matrix where each element in the diagonal is positive.
The concept of asymptotic equivalence allows us to explic-

itly relate our matrices of interest to both circulant matrices
and Toeplitz matrices, whose asymptotic spectral densities have
been well studied.

Lemma 5: For any continuous function , we have

where denotes the th eigenvalue of
.

Proof: See Appendix F-C.
We can now prove the capacity result. The standard capacity

results for parallel channels [1, Th. 7.5.1] imply that the capacity
of the discretized sampled analog channel is given by the para-
metric equations

(38)

(39)

where is the water level of the optimal power alloca-
tion over this discrete model, as can be calculated through
(39). Since this capacity depends on the eigenvalues of

, then by Lemma 5, the
convergence as is guaranteed and the capacity

can be expressed using and .
Specifically,

Similarly, (39) can be transformed into

which completes the proof.

APPENDIX B
PROOF OF THEOREM 4

We follow similar steps as in the proof of Theorem 2: we
approximate the sampled channel using a discretized model



CHEN et al.: SHANNON MEETS NYQUIST: CAPACITY OF SAMPLED GAUSSIAN CHANNELS 4905

first, whiten the noise, and then find capacity of the equivalent
channel matrix. Due to the use of filter banks, the equivalent
channel matrix is no longer asymptotically equivalent to a
Toeplitz matrix, but instead a block-Toeplitz matrix. This moti-
vates us to exploit the asymptotic properties of block-Toeplitz
matrices.

A) Channel Discretization and Diagonalization: Let
, and suppose we have and with inte-

gers and . Similarly, we can define

We introduce the following two matrices as

...
...

...
...

...
...

...
...

We also set

and

. Defining

leads to the dis-

cretized channel model

...
...

Whitening the noise gives us

...
...

where is i.i.d. Gaussian variable with variance . We can
express capacity of the sampled analog channel under filter-
bank sampling as the following limit:

Here, the supremum is taken over all distribution of subject
to a power constraint .

B) Capacity via Convergence of the Discrete Model: We
can see that for any ,

(40)

where the Toeplitz matrix is defined such that for any

(41)

Let . Then, the Hermitian block
Toeplitz matrix

...
...

...
...

satisfies . Additionally, we define
, where

(42)

and we let . The block Toeplitz
matrix

...
...

...
...

satisfies

(43)

The Fourier symbol matrix associated with
has elements given by
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Denote by the sequence of block Toeplitz ma-
trices generated by , and denote by the

Toeplitz block of . It can be verified that

which immediately yields

(44)
Therefore, for any continuous function , [29, Th. 5.4] im-
plies that

Denote ; then, the capacity of parallel chan-
nels [1], which is achieved via water filling power allocation,
yields

where

This completes the proof.

APPENDIX C
PROOF OF THEOREM 5

Theorem 5 immediately follows from the following proposi-
tion.

Proposition 4: The th largest eigenvalue of the posi-
tive semidefinite matrix is bounded by

(45)

These upper bounds can be attained simultaneously by the filter
(16).

Proof: Recall that at a given is an infinite diagonal
matrix satisfying for all , and

that . Hence, is an
dimensional matrix. We observe that

(46)

which indicates that the rows of are orthonormal. Hence, the
operator norm of is no larger than 1, which leads to

Denote by the standard basis where is a
vector with a 1 in the th coordinate and 0 otherwise. We intro-
duce the index set such that
is the eigenvector associated with the th largest eigenvalues
of the diagonal matrix .
Suppose that is the eigenvector associated with the th

largest eigenvalue of , and denote by

the th column of . Since is Hermitian positive
semidefinite, its eigendecomposition yields an orthogonal basis
of eigenvectors. Observe that spans a -dimen-

sional space and that spans a sub-

space of dimension no more than . For any , there
exists scalars such that

(47)
This allows us to define the following unit vector:

(48)

which is orthogonal to . We observe

that

(49)
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Define . From (47), we can see that

holds for all . In other

words, . This further implies that

(50)

(51)

(52)

by observing that is a diagonal matrix.
Setting

if

otherwise,

yields , and hence, is a diagonal matrix
such that

(53)

Apparently, this choice of allows the upper bounds

(54)

to be attained simultaneously.
By extracting out the frequencies with the highest SNR

from each aliased set , we achieve
, thus achieving the maximum capacity.

APPENDIX D
PROOF OF THEOREM 6

Following similar steps as in the proof of Theorem 4,
we approximately convert the sampled channel into its dis-
crete counterpart and calculate the capacity of the discretized
channel model after noise whitening. We note that the impulse
response of the sampled channel is no longer LTI due to the
use of modulation banks. But the periodicity assumption of the
modulation sequences allows us to treat the channel matrix as
blockwise LTI, which provides a way to exploit the properties
of block-Toeplitz matrices.
Again, we give a proof for the scenario where noise is

white Gaussian with unit spectral density. The capacity ex-
pression in the presence of colored noise can immediately be
derived by replacing with and with

.

In the th branch, the noise component at time is given by

where .

Let . Our assumption immediately
leads to

implying that is a block-Toeplitz function.
Similarly, the signal component

where

which also satisfies the block-Toeplitz property
.

Suppose that and hold for some integers
and . We can introduce two matrices and such that

.

Setting leads to similar dis-
cretized approximation as in the proof of Theorem 2:

(55)

Here, is a i.i.d. zero-mean Gaussian vector where each entry
is of variance .
Hence, and are block Toeplitz matrices satisfying

and .
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Using the same definition of and as in Appendix B, we
can express the system equation as

...
...

(56)

Whitening the noise component yields

...
...

...
(57)

where is i.i.d. Gaussian noise with variance .
In order to calculate the capacity limit, we need to investi-

gate the Fourier symbols associated with these block Toeplitz
matrices.

Lemma 6: At a given frequency , the Fourier symbol
with respect to is given by , and
the Fourier symbol with respect to is given by

. Here, for any such that
and , we have

Also, and are infinite diagonal matrices such that for all

.

Proof: See Appendix F-D.
Define such that its subblock is , and

such that its subblock is . Proceeding similarly
as in the proof of Theorem 4, we obtain

where contain submatrices. The submatrix of
is given by .

Denote . For any continuous function
, [29, Th. 5.4] implies that

Then, capacity of parallel channels, achieved via water-filling
power allocation, yields

where the water level can be computed through the following
parametric equation:

APPENDIX E
PROOF OF PROPOSITION 3

Denote by the analog signal after passing through the
th prefilter prior to ideal sampling. When both the input signal
and the noise are Gaussian, the MMSE estimator of
from samples is linear. Recall that

and . A linear estimator of from
can be given as

(58)

where we use the vector form and
for notational simplicity. Here,

denotes the interpolation function operating upon the sam-
ples in the th branch. We propose to find the optimal esti-
mator that minimizes the mean square estimation error

for some .

From the orthogonality principle, the MMSE estimate
obeys

(59)

Since and are both stationary Gaussian processes,
we can define to be the
cross correlation function between and , and

the autocorrelation function
of . Plugging (58) into (59) leads to the following relation:
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Replacing by , we can equivalently express it as

(60)

which is equivalent to the convolution of and

.

Let denote Fourier transform operator. Define
the cross spectral density and

. By taking the Fourier transform on both
sides of (60), we have

which immediately yields that

Since the noise is independent of , the cross correlation
function is

which allows the cross spectral density to be derived as

(61)

Additionally, the spectral density of can be given as the
following matrix:

(62)

with denoting the spectral density of the noise , and
.

Define

TheWiener–Hopf linear reconstruction filter can now bewritten
as

Define . Since
, the resulting MSE at any sample time is

Since and
, Parseval’s identity implies that

Suppose that we impose power constraints
, and define .

For a given input process , the problem of finding the op-
timal prefilter that minimizes MSE then becomes

where the objective function can be alternatively rewritten in
matrix form

(63)

Here and are diagonal matrices such that
and . We observe that

(64)
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where (a) follows by introducing , (b)
follows from the fact that are all diagonal matrices,

(c) follows by introducing , and (d) follows
by observing that .
Here, is an infinite diagonal matrix such that

. In other words, the upper bound is the sum of the largest
which are associated with frequency points of highest

SNR .
Therefore, when restricted to the set of all permutations of

, the minimum MSE is achieved
when assigning the largest to branches with
the largest SNR. In this case, the corresponding optimal filter
can be chosen such that

if
otherwise

(65)

where is the index of the th largest element in
.

APPENDIX F
PROOFS OF AUXILIARY LEMMAS

A) Proof of Lemma 3: For any , we have

(66)

Since is absolutely summable and Riemann integrable,
for sufficiently small , there exists a constant such that

. In the following analysis, we define

and to capture the two residual terms respectively, i.e.,

In order to prove that , we need to prove

1) , or equivalently,

and ; and
2) the norms of both and are uniformly
bounded, i.e., such that and

for all .

1) We first prove that . By

our assumptions, we have for some .

Since is absolutely integrable, also
holds. Without loss of generality, we suppose that .
a) if , by the assumption for some

, one has

(67)

b) if ,

(68)

c) if and , we have

(69)

By combining inequalities (67), (68), and (69), we can
obtain

Similarly, we can show that
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which immediately implies that

2) We now proceed to show that and

are uniformly bounded. Since is a Toeplitz matrix, ap-
plying [24, Lemma 6] and [24, Sec. 4.1] yields

Additionally, since is a block Toeplitz matrix, [29,
Corollary 4.2] allows us to bound the norm as

Hence, by definition of asymptotic equivalence, we have
.

B) Proof of Lemma 4: We know that ; hence,
. Recall that .

For a given , the Fourier series related to can be given
as

(70)

By Lemma 2, in order to show , we will
need to show that is uniformly bounded away from 0.
When is sufficiently large, the Riemann integrability of

implies that

We observe that

Since corresponds to the Fourier transform of the signals
obtained by uniformly sampling , we can
immediately see that

(71)

If for all , we have

(72)

for some constant , then ,

which leads to .

Let . Since , we can have
, which implies that

The Taylor expansion of yields

Hence, we can bound

C) Proof of Lemma 5: Since and
are both Hermitian and positive semidefinite, we have

. The asymptotic equivalence allows

us to relate to the function associated with the
spectrum of the circulant matrix instead of . One nice
property is that is still a circulant
matrix. Combining the above results with Lemma 1 yields

Note that is simply multiplication of 3
Toeplitz matrices. This allows us to untangle and ,
hence separating and .
Specifically, denote by the

Fourier series related to , and , respectively.
We note that , and are all scalars since
their related matrices are Toeplitz, while is a vector
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since is block Toeplitz. Then, for any continuous function
, applying [24, Th. 12] yields

Now we only need to show that both and have
simple closed-form expressions. We observe that is asymp-
totically equivalent to , and the eigenvalues of
are exactly the square of the corresponding singular values of
. Hence, we know from [29] that for any continuous func-

tion :

where can be expressed as

. Here, for any :

The above analysis implies that .
Through algebraic manipulation, we have that

which yields

Similarly, we have

(73)

Combining the above results yields

This completes the proof.
D) Proof of Lemma 6: Denote by the Fourier symbol

associated with the block Toeplitz matrix . We know that the
Fourier transform of with respect to is given by

Introduce the notation . For any

such that and , the entry of
the Fourier symbol can be related to the sampling sequence

of at a rate with a phase shift , and hence, it
can be calculated as follows:

Using the fact that

, we get through algebraic manipulation that
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Define another matrix such that

It can be easily seen that

Replacing by immediately gives us the Fourier symbol
for .
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